231 research outputs found

    Automatic alignment of surgical videos using kinematic data

    Full text link
    Over the past one hundred years, the classic teaching methodology of "see one, do one, teach one" has governed the surgical education systems worldwide. With the advent of Operation Room 2.0, recording video, kinematic and many other types of data during the surgery became an easy task, thus allowing artificial intelligence systems to be deployed and used in surgical and medical practice. Recently, surgical videos has been shown to provide a structure for peer coaching enabling novice trainees to learn from experienced surgeons by replaying those videos. However, the high inter-operator variability in surgical gesture duration and execution renders learning from comparing novice to expert surgical videos a very difficult task. In this paper, we propose a novel technique to align multiple videos based on the alignment of their corresponding kinematic multivariate time series data. By leveraging the Dynamic Time Warping measure, our algorithm synchronizes a set of videos in order to show the same gesture being performed at different speed. We believe that the proposed approach is a valuable addition to the existing learning tools for surgery.Comment: Accepted at AIME 201

    In-medium hadronic spectral functions through the soft-wall holographic model of QCD

    Full text link
    We study the scalar glueball and vector meson spectral functions in a hot and dense medium by means of the soft-wall holographic model of QCD. Finite temperature and density effects are implemented through the AdS/RN metric. We analyse the behaviour of the hadron masses and widths in the (T,μ)(T,\mu) plane, and compare our results with the experimental ones and with other theoretical determinations.Comment: 16 pages, 6 figures. matching the published versio

    Quantum Simulation of Tunneling in Small Systems

    Full text link
    A number of quantum algorithms have been performed on small quantum computers; these include Shor's prime factorization algorithm, error correction, Grover's search algorithm and a number of analog and digital quantum simulations. Because of the number of gates and qubits necessary, however, digital quantum particle simulations remain untested. A contributing factor to the system size required is the number of ancillary qubits needed to implement matrix exponentials of the potential operator. Here, we show that a set of tunneling problems may be investigated with no ancillary qubits and a cost of one single-qubit operator per time step for the potential evolution. We show that physically interesting simulations of tunneling using 2 qubits (i.e. on 4 lattice point grids) may be performed with 40 single and two-qubit gates. Approximately 70 to 140 gates are needed to see interesting tunneling dynamics in three-qubit (8 lattice point) simulations.Comment: 4 pages, 2 figure

    Expression of B-RAF V600E in Type II Pneumocytes Causes Abnormalities in Alveolar Formation, Airspace Enlargement and Tumor Formation in Mice

    Get PDF
    Growth factor induced signaling cascades are key regulatory elements in tissue development, maintenance and regeneration. Perturbations of these cascades have severe consequences, leading to developmental disorders and neoplastic diseases. As a major function in signal transduction, activating mutations in RAF family kinases are the cause of human tumorigenesis, where B-RAF V600E has been identified as the prevalent mutant. In order to address the oncogenic function of B-RAF V600E, we have generated transgenic mice expressing the activated oncogene specifically in lung alveolar epithelial type II cells. Constitutive expression of B-RAF V600E caused abnormalities in alveolar epithelium formation that led to airspace enlargements. These lung lesions showed signs of tissue remodeling and were often associated with chronic inflammation and low incidence of lung tumors. The inflammatory cell infiltration did not precede the formation of the lung lesions but was rather accompanied with late tumor development. These data support a model where the continuous regenerative process initiated by oncogenic B-RAF-driven alveolar disruption provides a tumor-promoting environment associated with chronic inflammation

    Cross-Talk between Signaling Pathways Can Generate Robust Oscillations in Calcium and cAMP

    Get PDF
    BACKGROUND:To control and manipulate cellular signaling, we need to understand cellular strategies for information transfer, integration, and decision-making. A key feature of signal transduction is the generation of only a few intracellular messengers by many extracellular stimuli. METHODOLOGY/PRINCIPAL FINDINGS:Here we model molecular cross-talk between two classic second messengers, cyclic AMP (cAMP) and calcium, and show that the dynamical complexity of the response of both messengers increases substantially through their interaction. In our model of a non-excitable cell, both cAMP and calcium concentrations can oscillate. If mutually inhibitory, cross-talk between the two second messengers can increase the range of agonist concentrations for which oscillations occur. If mutually activating, cross-talk decreases the oscillation range, but can generate 'bursting' oscillations of calcium and may enable better filtering of noise. CONCLUSION:We postulate that this increased dynamical complexity allows the cell to encode more information, particularly if both second messengers encode signals. In their native environments, it is unlikely that cells are exposed to one stimulus at a time, and cross-talk may help generate sufficiently complex responses to allow the cell to discriminate between different combinations and concentrations of extracellular agonists

    An Administrative Claims Model for Profiling Hospital 30-Day Mortality Rates for Pneumonia Patients

    Get PDF
    Outcome measures for patients hospitalized with pneumonia may complement process measures in characterizing quality of care. We sought to develop and validate a hierarchical regression model using Medicare claims data that produces hospital-level, risk-standardized 30-day mortality rates useful for public reporting for patients hospitalized with pneumonia.Retrospective study of fee-for-service Medicare beneficiaries age 66 years and older with a principal discharge diagnosis of pneumonia. Candidate risk-adjustment variables included patient demographics, administrative diagnosis codes from the index hospitalization, and all inpatient and outpatient encounters from the year before admission. The model derivation cohort included 224,608 pneumonia cases admitted to 4,664 hospitals in 2000, and validation cohorts included cases from each of years 1998-2003. We compared model-derived state-level standardized mortality estimates with medical record-derived state-level standardized mortality estimates using data from the Medicare National Pneumonia Project on 50,858 patients hospitalized from 1998-2001. The final model included 31 variables and had an area under the Receiver Operating Characteristic curve of 0.72. In each administrative claims validation cohort, model fit was similar to the derivation cohort. The distribution of standardized mortality rates among hospitals ranged from 13.0% to 23.7%, with 25(th), 50(th), and 75(th) percentiles of 16.5%, 17.4%, and 18.3%, respectively. Comparing model-derived risk-standardized state mortality rates with medical record-derived estimates, the correlation coefficient was 0.86 (Standard Error = 0.032).An administrative claims-based model for profiling hospitals for pneumonia mortality performs consistently over several years and produces hospital estimates close to those using a medical record model

    Macrophage-Specific ApoE Gene Repair Reduces Diet-Induced Hyperlipidemia and Atherosclerosis in Hypomorphic Apoe Mice

    Get PDF
    Apolipoprotein (apo) E is best known for its ability to lower plasma cholesterol and protect against atherosclerosis. Although the liver is the major source of plasma apoE, extra-hepatic sources of apoE, including from macrophages, account for up to 10% of plasma apoE levels. This study examined the contribution of macrophage-derived apoE expression levels in diet-induced hyperlipidemia and atherosclerosis.Hypomorphic apoE (Apoe(h/h)) mice expressing wildtype mouse apoE at ∼2-5% of physiological levels in all tissues were derived by gene targeting in embryonic stem cells. Cre-mediated gene repair of the Apoe(h/h) allele in Apoe(h/h)LysM-Cre mice raised apoE expression levels by 26 fold in freshly isolated peritoneal macrophages, restoring it to 37% of levels seen in wildtype mice. Chow-fed Apoe(h/h)LysM-Cre and Apoe(h/h) mice displayed similar plasma apoE and cholesterol levels (55.53±2.90 mg/dl versus 62.70±2.77 mg/dl, n = 12). When fed a high-cholesterol diet (HCD) for 16 weeks, Apoe(h/h)LysM-Cre mice displayed a 3-fold increase in plasma apoE and a concomitant 32% decrease in plasma cholesterol when compared to Apoe(h/h) mice (602.20±22.30 mg/dl versus 888.80±24.99 mg/dl, n = 7). On HCD, Apoe(h/h)LysM-Cre mice showed increased apoE immunoreactivity in lesional macrophages and liver-associated Kupffer cells but not hepatocytes. In addition, Apoe(h/h)LysM-Cre mice developed 35% less atherosclerotic lesions in the aortic root than Apoe(h/h) mice (167×10(3)±16×10(3) µm(2) versus 259×10(3)±56×10(3) µm(2), n = 7). This difference in atherosclerosis lesions size was proportional to the observed reduction in plasma cholesterol.Macrophage-derived apoE raises plasma apoE levels in response to diet-induced hyperlipidemia and by such reduces atherosclerosis proportionally to the extent to which it lowers plasma cholesterol levels

    Are Good Intentions Good Enough?: Informed Consent Without Trained Interpreters

    Get PDF
    OBJECTIVE: To examine the informed consent process when trained language interpreters are unavailable. BACKGROUND: Ensuring sufficient patient understanding for informed consent is especially challenging for patients with Limited English Proficiency (LEP). While US law requires provision of competent translation for LEP patients, such services are commonly unavailable. DESIGN AND PARTICIPANTS: Qualitative data was collected in 8 prenatal genetics clinics in Texas, including interviews and observations with 16 clinicians, and 30 Latina patients. Using content analysis techniques, we examined whether the basic criteria for informed consent (voluntariness, discussion of alternatives, adequate information, and competence) were evident for each of these patients, contrasting LEP patients with patients not needing an interpreter. We present case examples of difficulties related to each of these criteria, and compare informed consent scores for consultations requiring interpretation and those which did not. RESULTS: We describe multiple communication problems related to the use of untrained interpreters, or reliance on clinicians’ own limited Spanish. These LEP patients appear to be consistently disadvantaged in each of the criteria we examined, and informed consent scores were notably lower for consultations which occurred across a language barrier. CONCLUSIONS: In the absence of adequate Spanish interpretation, it was uncertain whether these LEP patients were provided the quality and content of information needed to assure that they are genuinely informed. We offer some low-cost practice suggestions that might mitigate these problems, and improve the quality of language interpretation, which is essential to assuring informed choice in health care for LEP patients

    Identification of Extracellular Segments by Mass Spectrometry Improves Topology Prediction of Transmembrane Proteins

    Get PDF
    Transmembrane proteins play crucial role in signaling, ion transport, nutrient uptake, as well as in maintaining the dynamic equilibrium between the internal and external environment of cells. Despite their important biological functions and abundance, less than 2% of all determined structures are transmembrane proteins. Given the persisting technical difficulties associated with high resolution structure determination of transmembrane proteins, additional methods, including computational and experimental techniques remain vital in promoting our understanding of their topologies, 3D structures, functions and interactions. Here we report a method for the high-throughput determination of extracellular segments of transmembrane proteins based on the identification of surface labeled and biotin captured peptide fragments by LC/MS/MS. We show that reliable identification of extracellular protein segments increases the accuracy and reliability of existing topology prediction algorithms. Using the experimental topology data as constraints, our improved prediction tool provides accurate and reliable topology models for hundreds of human transmembrane proteins
    corecore